MCMC search with fully coherent BSGL statisticΒΆ

Targeted MCMC search for an isolated CW signal using the fully coherent line-robust BSGL-statistic.

  9 import os
 10
 11 import numpy as np
 12
 13 import pyfstat
 14
 15 label = os.path.splitext(os.path.basename(__file__))[0]
 16 outdir = os.path.join("PyFstat_example_data", label)
 17 logger = pyfstat.set_up_logger(label=label, outdir=outdir)
 18
 19 # Properties of the GW data - first we make data for two detectors,
 20 # both including Gaussian noise and a coherent 'astrophysical' signal.
 21 data_parameters = {
 22     "sqrtSX": 1e-23,
 23     "tstart": 1000000000,
 24     "duration": 100 * 86400,
 25     "detectors": "H1,L1",
 26     "SFTWindowType": "tukey",
 27     "SFTWindowBeta": 0.001,
 28 }
 29 tend = data_parameters["tstart"] + data_parameters["duration"]
 30 mid_time = 0.5 * (data_parameters["tstart"] + tend)
 31
 32 # Properties of the signal
 33 depth = 10
 34 signal_parameters = {
 35     "F0": 30.0,
 36     "F1": -1e-10,
 37     "F2": 0,
 38     "Alpha": np.radians(83.6292),
 39     "Delta": np.radians(22.0144),
 40     "tref": mid_time,
 41     "h0": data_parameters["sqrtSX"] / depth,
 42     "cosi": 1.0,
 43 }
 44
 45 data = pyfstat.Writer(
 46     label=label, outdir=outdir, **data_parameters, **signal_parameters
 47 )
 48 data.make_data()
 49
 50 # Now we add an additional single-detector artifact to H1 only.
 51 # For simplicity, this is modelled here as a fully modulated CW-like signal,
 52 # just restricted to the single detector.
 53 SFTs_H1 = data.sftfilepath.split(";")[0]
 54 data_parameters_line = data_parameters.copy()
 55 signal_parameters_line = signal_parameters.copy()
 56 data_parameters_line["detectors"] = "H1"
 57 data_parameters_line["sqrtSX"] = 0  # don't add yet another set of Gaussian noise
 58 signal_parameters_line["F0"] += 1e-6
 59 signal_parameters_line["h0"] *= 10.0
 60 extra_writer = pyfstat.Writer(
 61     label=label,
 62     outdir=outdir,
 63     **data_parameters_line,
 64     **signal_parameters_line,
 65     noiseSFTs=SFTs_H1,
 66 )
 67 extra_writer.make_data()
 68
 69 # The predicted twoF, given by lalapps_predictFstat can be accessed by
 70 twoF = data.predict_fstat()
 71 logger.info("Predicted twoF value: {}\n".format(twoF))
 72
 73 # MCMC prior ranges
 74 DeltaF0 = 1e-5
 75 DeltaF1 = 1e-13
 76 theta_prior = {
 77     "F0": {
 78         "type": "unif",
 79         "lower": signal_parameters["F0"] - DeltaF0 / 2.0,
 80         "upper": signal_parameters["F0"] + DeltaF0 / 2.0,
 81     },
 82     "F1": {
 83         "type": "unif",
 84         "lower": signal_parameters["F1"] - DeltaF1 / 2.0,
 85         "upper": signal_parameters["F1"] + DeltaF1 / 2.0,
 86     },
 87 }
 88 for key in "F2", "Alpha", "Delta":
 89     theta_prior[key] = signal_parameters[key]
 90
 91 # MCMC sampler settings - relatively cheap setup, may not converge perfectly
 92 ntemps = 2
 93 log10beta_min = -0.5
 94 nwalkers = 50
 95 nsteps = [100, 100]
 96
 97 # we'll want to plot results relative to the injection parameters
 98 transform_dict = dict(
 99     F0=dict(subtractor=signal_parameters["F0"], symbol="$f-f^\\mathrm{s}$"),
100     F1=dict(
101         subtractor=signal_parameters["F1"], symbol="$\\dot{f}-\\dot{f}^\\mathrm{s}$"
102     ),
103 )
104
105 # first search: standard F-statistic
106 # This should show a weak peak from the coherent signal
107 # and a larger one from the "line artifact" at higher frequency.
108 mcmc_F = pyfstat.MCMCSearch(
109     label=label + "_twoF",
110     outdir=outdir,
111     sftfilepattern=os.path.join(outdir, "*{}*sft".format(label)),
112     theta_prior=theta_prior,
113     tref=mid_time,
114     minStartTime=data_parameters["tstart"],
115     maxStartTime=tend,
116     nsteps=nsteps,
117     nwalkers=nwalkers,
118     ntemps=ntemps,
119     log10beta_min=log10beta_min,
120     BSGL=False,
121 )
122 mcmc_F.transform_dictionary = transform_dict
123 mcmc_F.run(
124     walker_plot_args={"plot_det_stat": True, "injection_parameters": signal_parameters}
125 )
126 mcmc_F.print_summary()
127 mcmc_F.plot_corner(add_prior=True, truths=signal_parameters)
128 mcmc_F.plot_prior_posterior(injection_parameters=signal_parameters)
129
130 # second search: line-robust statistic BSGL activated
131 mcmc_F = pyfstat.MCMCSearch(
132     label=label + "_BSGL",
133     outdir=outdir,
134     sftfilepattern=os.path.join(outdir, "*{}*sft".format(label)),
135     theta_prior=theta_prior,
136     tref=mid_time,
137     minStartTime=data_parameters["tstart"],
138     maxStartTime=tend,
139     nsteps=nsteps,
140     nwalkers=nwalkers,
141     ntemps=ntemps,
142     log10beta_min=log10beta_min,
143     BSGL=True,
144 )
145 mcmc_F.transform_dictionary = transform_dict
146 mcmc_F.run(
147     walker_plot_args={"plot_det_stat": True, "injection_parameters": signal_parameters}
148 )
149 mcmc_F.print_summary()
150 mcmc_F.plot_corner(add_prior=True, truths=signal_parameters)
151 mcmc_F.plot_prior_posterior(injection_parameters=signal_parameters)

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery