Follow up exampleΒΆ

Multi-stage MCMC follow up of a CW signal produced by an isolated source using a ladder of coherent times.

  8 import os
  9
 10 import matplotlib.pyplot as plt
 11 import numpy as np
 12
 13 import pyfstat
 14
 15 label = "PyFstat_example_semi_coherent_directed_follow_up"
 16 outdir = os.path.join("PyFstat_example_data", label)
 17 logger = pyfstat.set_up_logger(label=label, outdir=outdir)
 18
 19 # Properties of the GW data
 20 data_parameters = {
 21     "sqrtSX": 1e-23,
 22     "tstart": 1000000000,
 23     "duration": 100 * 86400,
 24     "detectors": "H1",
 25 }
 26 tend = data_parameters["tstart"] + data_parameters["duration"]
 27 mid_time = 0.5 * (data_parameters["tstart"] + tend)
 28
 29 # Properties of the signal
 30 depth = 40
 31 signal_parameters = {
 32     "F0": 30.0,
 33     "F1": -1e-10,
 34     "F2": 0,
 35     "Alpha": np.radians(83.6292),
 36     "Delta": np.radians(22.0144),
 37     "tref": mid_time,
 38     "h0": data_parameters["sqrtSX"] / depth,
 39     "cosi": 1.0,
 40 }
 41
 42 data = pyfstat.Writer(
 43     label=label, outdir=outdir, **data_parameters, **signal_parameters
 44 )
 45 data.make_data()
 46
 47 # The predicted twoF, given by lalapps_predictFstat can be accessed by
 48 twoF = data.predict_fstat()
 49 logger.info("Predicted twoF value: {}\n".format(twoF))
 50
 51 # Search
 52 VF0 = VF1 = 1e5
 53 DeltaF0 = np.sqrt(VF0) * np.sqrt(3) / (np.pi * data_parameters["duration"])
 54 DeltaF1 = np.sqrt(VF1) * np.sqrt(180) / (np.pi * data_parameters["duration"] ** 2)
 55 theta_prior = {
 56     "F0": {
 57         "type": "unif",
 58         "lower": signal_parameters["F0"] - DeltaF0 / 2.0,
 59         "upper": signal_parameters["F0"] + DeltaF0 / 2,
 60     },
 61     "F1": {
 62         "type": "unif",
 63         "lower": signal_parameters["F1"] - DeltaF1 / 2.0,
 64         "upper": signal_parameters["F1"] + DeltaF1 / 2,
 65     },
 66 }
 67 for key in "F2", "Alpha", "Delta":
 68     theta_prior[key] = signal_parameters[key]
 69
 70
 71 ntemps = 3
 72 log10beta_min = -0.5
 73 nwalkers = 100
 74 nsteps = [100, 100]
 75
 76 mcmc = pyfstat.MCMCFollowUpSearch(
 77     label=label,
 78     outdir=outdir,
 79     sftfilepattern=os.path.join(outdir, "*{}*sft".format(label)),
 80     theta_prior=theta_prior,
 81     tref=mid_time,
 82     minStartTime=data_parameters["tstart"],
 83     maxStartTime=tend,
 84     nwalkers=nwalkers,
 85     nsteps=nsteps,
 86     ntemps=ntemps,
 87     log10beta_min=log10beta_min,
 88 )
 89
 90 NstarMax = 1000
 91 Nsegs0 = 100
 92 walkers_fig, walkers_axes = plt.subplots(nrows=2, figsize=(3.4, 3.5))
 93 mcmc.run(
 94     NstarMax=NstarMax,
 95     Nsegs0=Nsegs0,
 96     plot_walkers=True,
 97     walker_plot_args={
 98         "labelpad": 0.01,
 99         "plot_det_stat": False,
100         "fig": walkers_fig,
101         "axes": walkers_axes,
102         "injection_parameters": signal_parameters,
103     },
104 )
105 walkers_fig.savefig(os.path.join(outdir, label + "_walkers.png"))
106 plt.close(walkers_fig)
107
108 mcmc.print_summary()
109 mcmc.plot_corner(add_prior=True, truths=signal_parameters)
110 mcmc.plot_prior_posterior(injection_parameters=signal_parameters)

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery