Follow up example

Multi-stage MCMC follow up of a CW signal produced by an isolated source using a ladder of coherent times.

  8 import pyfstat
  9 import numpy as np
 10 import matplotlib.pyplot as plt
 11 import os
 12
 13 label = "PyFstat_example_semi_coherent_directed_follow_up"
 14 outdir = os.path.join("PyFstat_example_data", label)
 15
 16 # Properties of the GW data
 17 data_parameters = {
 18     "sqrtSX": 1e-23,
 19     "tstart": 1000000000,
 20     "duration": 100 * 86400,
 21     "detectors": "H1",
 22 }
 23 tend = data_parameters["tstart"] + data_parameters["duration"]
 24 mid_time = 0.5 * (data_parameters["tstart"] + tend)
 25
 26 # Properties of the signal
 27 depth = 40
 28 signal_parameters = {
 29     "F0": 30.0,
 30     "F1": -1e-10,
 31     "F2": 0,
 32     "Alpha": np.radians(83.6292),
 33     "Delta": np.radians(22.0144),
 34     "tref": mid_time,
 35     "h0": data_parameters["sqrtSX"] / depth,
 36     "cosi": 1.0,
 37 }
 38
 39 data = pyfstat.Writer(
 40     label=label, outdir=outdir, **data_parameters, **signal_parameters
 41 )
 42 data.make_data()
 43
 44 # The predicted twoF, given by lalapps_predictFstat can be accessed by
 45 twoF = data.predict_fstat()
 46 print("Predicted twoF value: {}\n".format(twoF))
 47
 48 # Search
 49 VF0 = VF1 = 1e5
 50 DeltaF0 = np.sqrt(VF0) * np.sqrt(3) / (np.pi * data_parameters["duration"])
 51 DeltaF1 = np.sqrt(VF1) * np.sqrt(180) / (np.pi * data_parameters["duration"] ** 2)
 52 theta_prior = {
 53     "F0": {
 54         "type": "unif",
 55         "lower": signal_parameters["F0"] - DeltaF0 / 2.0,
 56         "upper": signal_parameters["F0"] + DeltaF0 / 2,
 57     },
 58     "F1": {
 59         "type": "unif",
 60         "lower": signal_parameters["F1"] - DeltaF1 / 2.0,
 61         "upper": signal_parameters["F1"] + DeltaF1 / 2,
 62     },
 63 }
 64 for key in "F2", "Alpha", "Delta":
 65     theta_prior[key] = signal_parameters[key]
 66
 67
 68 ntemps = 3
 69 log10beta_min = -0.5
 70 nwalkers = 100
 71 nsteps = [100, 100]
 72
 73 mcmc = pyfstat.MCMCFollowUpSearch(
 74     label=label,
 75     outdir=outdir,
 76     sftfilepattern=os.path.join(outdir, "*{}*sft".format(label)),
 77     theta_prior=theta_prior,
 78     tref=mid_time,
 79     minStartTime=data_parameters["tstart"],
 80     maxStartTime=tend,
 81     nwalkers=nwalkers,
 82     nsteps=nsteps,
 83     ntemps=ntemps,
 84     log10beta_min=log10beta_min,
 85 )
 86
 87 NstarMax = 1000
 88 Nsegs0 = 100
 89 walkers_fig, walkers_axes = plt.subplots(nrows=2, figsize=(3.4, 3.5))
 90 mcmc.run(
 91     NstarMax=NstarMax,
 92     Nsegs0=Nsegs0,
 93     plot_walkers=True,
 94     walker_plot_args={
 95         "labelpad": 0.01,
 96         "plot_det_stat": False,
 97         "fig": walkers_fig,
 98         "axes": walkers_axes,
 99         "injection_parameters": signal_parameters,
100     },
101 )
102 walkers_fig.savefig(os.path.join(outdir, label + "_walkers.png"))
103 plt.close(walkers_fig)
104
105 mcmc.print_summary()
106 mcmc.plot_corner(add_prior=True, truths=signal_parameters)
107 mcmc.plot_prior_posterior(injection_parameters=signal_parameters)

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery