MCMC search with fully coherent BSGL statisticΒΆ

Targeted MCMC search for an isolated CW signal using the fully coherent line-robust BSGL-statistic.

  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
 import pyfstat
 import numpy as np
 import os

 label = os.path.splitext(os.path.basename(__file__))[0]
 outdir = os.path.join("PyFstat_example_data", label)

 # Properties of the GW data - first we make data for two detectors,
 # both including Gaussian noise and a coherent 'astrophysical' signal.
 data_parameters = {
     "sqrtSX": 1e-23,
     "tstart": 1000000000,
     "duration": 100 * 86400,
     "detectors": "H1,L1",
     "SFTWindowType": "tukey",
     "SFTWindowBeta": 0.001,
 }
 tend = data_parameters["tstart"] + data_parameters["duration"]
 mid_time = 0.5 * (data_parameters["tstart"] + tend)

 # Properties of the signal
 depth = 10
 signal_parameters = {
     "F0": 30.0,
     "F1": -1e-10,
     "F2": 0,
     "Alpha": np.radians(83.6292),
     "Delta": np.radians(22.0144),
     "tref": mid_time,
     "h0": data_parameters["sqrtSX"] / depth,
     "cosi": 1.0,
 }

 data = pyfstat.Writer(
     label=label, outdir=outdir, **data_parameters, **signal_parameters
 )
 data.make_data()

 # Now we add an additional single-detector artifact to H1 only.
 # For simplicity, this is modelled here as a fully modulated CW-like signal,
 # just restricted to the single detector.
 SFTs_H1 = data.sftfilepath.split(";")[0]
 data_parameters_line = data_parameters.copy()
 signal_parameters_line = signal_parameters.copy()
 data_parameters_line["detectors"] = "H1"
 data_parameters_line["sqrtSX"] = 0  # don't add yet another set of Gaussian noise
 signal_parameters_line["F0"] += 1e-6
 signal_parameters_line["h0"] *= 10.0
 extra_writer = pyfstat.Writer(
     label=label,
     outdir=outdir,
     **data_parameters_line,
     **signal_parameters_line,
     noiseSFTs=SFTs_H1,
 )
 extra_writer.make_data()

 # The predicted twoF, given by lalapps_predictFstat can be accessed by
 twoF = data.predict_fstat()
 print("Predicted twoF value: {}\n".format(twoF))

 # MCMC prior ranges
 DeltaF0 = 1e-5
 DeltaF1 = 1e-13
 theta_prior = {
     "F0": {
         "type": "unif",
         "lower": signal_parameters["F0"] - DeltaF0 / 2.0,
         "upper": signal_parameters["F0"] + DeltaF0 / 2.0,
     },
     "F1": {
         "type": "unif",
         "lower": signal_parameters["F1"] - DeltaF1 / 2.0,
         "upper": signal_parameters["F1"] + DeltaF1 / 2.0,
     },
 }
 for key in "F2", "Alpha", "Delta":
     theta_prior[key] = signal_parameters[key]

 # MCMC sampler settings - relatively cheap setup, may not converge perfectly
 ntemps = 2
 log10beta_min = -0.5
 nwalkers = 50
 nsteps = [100, 100]

 # we'll want to plot results relative to the injection parameters
 transform_dict = dict(
     F0=dict(subtractor=signal_parameters["F0"], symbol="$f-f^\\mathrm{s}$"),
     F1=dict(
         subtractor=signal_parameters["F1"], symbol="$\\dot{f}-\\dot{f}^\\mathrm{s}$"
     ),
 )

 # first search: standard F-statistic
 # This should show a weak peak from the coherent signal
 # and a larger one from the "line artifact" at higher frequency.
 mcmc_F = pyfstat.MCMCSearch(
     label=label + "_twoF",
     outdir=outdir,
     sftfilepattern=os.path.join(outdir, "*{}*sft".format(label)),
     theta_prior=theta_prior,
     tref=mid_time,
     minStartTime=data_parameters["tstart"],
     maxStartTime=tend,
     nsteps=nsteps,
     nwalkers=nwalkers,
     ntemps=ntemps,
     log10beta_min=log10beta_min,
     BSGL=False,
 )
 mcmc_F.transform_dictionary = transform_dict
 mcmc_F.run(
     walker_plot_args={"plot_det_stat": True, "injection_parameters": signal_parameters}
 )
 mcmc_F.print_summary()
 mcmc_F.plot_corner(add_prior=True, truths=signal_parameters)
 mcmc_F.plot_prior_posterior(injection_parameters=signal_parameters)

 # second search: line-robust statistic BSGL activated
 mcmc_F = pyfstat.MCMCSearch(
     label=label + "_BSGL",
     outdir=outdir,
     sftfilepattern=os.path.join(outdir, "*{}*sft".format(label)),
     theta_prior=theta_prior,
     tref=mid_time,
     minStartTime=data_parameters["tstart"],
     maxStartTime=tend,
     nsteps=nsteps,
     nwalkers=nwalkers,
     ntemps=ntemps,
     log10beta_min=log10beta_min,
     BSGL=True,
 )
 mcmc_F.transform_dictionary = transform_dict
 mcmc_F.run(
     walker_plot_args={"plot_det_stat": True, "injection_parameters": signal_parameters}
 )
 mcmc_F.print_summary()
 mcmc_F.plot_corner(add_prior=True, truths=signal_parameters)
 mcmc_F.plot_prior_posterior(injection_parameters=signal_parameters)

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery