PyFstat
v1.11.5

Contents:

  • PyFstat
  • PyFstat module documentation
  • Examples
    • Grid searches for isolated CW
    • MCMC searches for isolated CW signals
    • Comparison between MCMC and Grid searches
    • Multi-stage MCMC follow up
    • Binary-modulated CW searches
      • Binary CW example: Semicoherent MCMC search
      • Binary CW example: Comparison between MCMC and grid search
    • Glitch robust CW searches
    • Transient CW searches
    • Other examples
PyFstat
  • »
  • Examples »
  • Binary-modulated CW searches »
  • Binary CW example: Comparison between MCMC and grid search
  • Edit on GitHub

Note

Click here to download the full example code

Binary CW example: Comparison between MCMC and grid searchΒΆ

Comparison of the semicoherent F-statistic MCMC search algorithm to a simple grid search accross the parameter space corresponding to a CW source in a binary system.

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
 import pyfstat
 import os
 import numpy as np
 import matplotlib.pyplot as plt

 # Set to false to include eccentricity
 circular_orbit = False

 label = "PyFstat_example_binary_mcmc_vs_grid_comparison" + (
     "_circular_orbit" if circular_orbit else ""
 )
 outdir = os.path.join("PyFstat_example_data", label)

 # Parameters to generate a data set
 data_parameters = {
     "sqrtSX": 1e-22,
     "tstart": 1000000000,
     "duration": 90 * 86400,
     "detectors": "H1,L1",
     "Tsft": 3600,
     "Band": 4,
 }

 # Injected signal parameters
 tend = data_parameters["tstart"] + data_parameters["duration"]
 mid_time = 0.5 * (data_parameters["tstart"] + tend)
 depth = 10.0
 signal_parameters = {
     "tref": data_parameters["tstart"],
     "F0": 40.0,
     "F1": 0,
     "F2": 0,
     "Alpha": 0.5,
     "Delta": 0.5,
     "period": 85 * 24 * 3600.0,
     "asini": 4.0,
     "tp": mid_time * 1.05,
     "argp": 0.0 if circular_orbit else 0.54,
     "ecc": 0.0 if circular_orbit else 0.7,
     "h0": data_parameters["sqrtSX"] / depth,
     "cosi": 1.0,
 }


 print("Generating SFTs with injected signal...")
 writer = pyfstat.BinaryModulatedWriter(
     label="simulated_signal",
     outdir=outdir,
     **data_parameters,
     **signal_parameters,
 )
 writer.make_data()
 print("")

 print("Performing Grid Search...")

 # Create ad-hoc grid and compute Fstatistic around injection point
 # There's no class supporting a binary search in the same way as
 # grid_based_searches.GridSearch, so we do it by hand constructing
 # a grid and using core.ComputeFstat.
 half_points_per_dimension = 2
 search_keys = ["period", "asini", "tp", "argp", "ecc"]
 search_keys_label = [
     r"$P$ [s]",
     r"$a_p$ [s]",
     r"$t_{p}$ [s]",
     r"$\omega$ [rad]",
     r"$e$",
 ]

 grid_arrays = np.meshgrid(
     *[
         signal_parameters[key]
         * (
             1
             + 0.01
             * np.arange(-half_points_per_dimension, half_points_per_dimension + 1, 1)
         )
         for key in search_keys
     ]
 )
 grid_points = np.hstack(
     [grid_arrays[i].reshape(-1, 1) for i in range(len(grid_arrays))]
 )

 compute_f_stat = pyfstat.ComputeFstat(
     sftfilepattern=os.path.join(outdir, "*simulated_signal*sft"),
     tref=signal_parameters["tref"],
     binary=True,
     minCoverFreq=-0.5,
     maxCoverFreq=-0.5,
 )
 twoF_values = np.zeros(grid_points.shape[0])
 for ind in range(grid_points.shape[0]):
     point = grid_points[ind]
     twoF_values[ind] = compute_f_stat.get_fullycoherent_twoF(
         F0=signal_parameters["F0"],
         F1=signal_parameters["F1"],
         F2=signal_parameters["F2"],
         Alpha=signal_parameters["Alpha"],
         Delta=signal_parameters["Delta"],
         period=point[0],
         asini=point[1],
         tp=point[2],
         argp=point[3],
         ecc=point[4],
     )
 print(f"2Fstat computed on {grid_points.shape[0]} points")
 print("")
 print("Plotting results...")
 dim = len(search_keys)
 fig, ax = plt.subplots(dim, 1, figsize=(10, 10))
 for ind in range(dim):
     a = ax.ravel()[ind]
     a.grid()
     a.set(xlabel=search_keys_label[ind], ylabel=r"$2 \mathcal{F}$", yscale="log")
     a.plot(grid_points[:, ind], twoF_values, "o")
     a.axvline(signal_parameters[search_keys[ind]], label="Injection", color="orange")
 plt.tight_layout()
 fig.savefig(os.path.join(outdir, "grid_twoF_per_dimension.png"))


 print("Performing MCMCSearch...")
 # Fixed points in frequency and sky parameters
 theta_prior = {
     "F0": signal_parameters["F0"],
     "F1": signal_parameters["F1"],
     "F2": signal_parameters["F2"],
     "Alpha": signal_parameters["Alpha"],
     "Delta": signal_parameters["Delta"],
 }

 # Set up priors for the binary parameters
 for key in search_keys:
     theta_prior.update(
         {
             key: {
                 "type": "unif",
                 "lower": 0.999 * signal_parameters[key],
                 "upper": 1.001 * signal_parameters[key],
             }
         }
     )
 if circular_orbit:
     for key in ["ecc", "argp"]:
         theta_prior[key] = 0
         search_keys.remove(key)

 # ptemcee sampler settings - in a real application we might want higher values
 ntemps = 2
 log10beta_min = -1
 nwalkers = 100
 nsteps = [100, 100]  # [burnin,production]

 mcmcsearch = pyfstat.MCMCSearch(
     label="mcmc_search",
     outdir=outdir,
     sftfilepattern=os.path.join(outdir, "*simulated_signal*sft"),
     theta_prior=theta_prior,
     tref=signal_parameters["tref"],
     nsteps=nsteps,
     nwalkers=nwalkers,
     ntemps=ntemps,
     log10beta_min=log10beta_min,
     binary=True,
 )
 # walker plot is generated during main run of the search class
 mcmcsearch.run(
     plot_walkers=True,
     walker_plot_args={"plot_det_stat": True, "injection_parameters": signal_parameters},
 )
 mcmcsearch.print_summary()

 # call some built-in plotting methods
 # these can all highlight the injection parameters, too
 print("Making MCMCSearch {:s} corner plot...".format("-".join(search_keys)))
 mcmcsearch.plot_corner(truths=signal_parameters)
 print("Making MCMCSearch prior-posterior comparison plot...")
 mcmcsearch.plot_prior_posterior(injection_parameters=signal_parameters)
 print("")

 print("*" * 20)
 print("Quantitative comparisons:")
 print("*" * 20)

 # some informative command-line output comparing search results and injection
 # get max twoF and binary Doppler parameters
 max_grid_index = np.argmax(twoF_values)
 max_grid_2F = twoF_values[max_grid_index]
 max_grid_parameters = grid_points[max_grid_index]

 # same for MCMCSearch, here twoF is separate, and non-sampled parameters are not included either
 max_dict_mcmc, max_2F_mcmc = mcmcsearch.get_max_twoF()
 print(
     "Grid Search:\n\tmax2F={:.4f}\n\tOffsets from injection parameters (relative error): {:s}.".format(
         max_grid_2F,
         ", ".join(
             [
                 "\n\t\t{1:s}: {0:.4e} ({2:.4f}%)".format(
                     max_grid_parameters[search_keys.index(key)]
                     - signal_parameters[key],
                     key,
                     100
                     * (
                         max_grid_parameters[search_keys.index(key)]
                         - signal_parameters[key]
                     )
                     / signal_parameters[key],
                 )
                 for key in search_keys
             ]
         ),
     )
 )
 print(
     "Max 2F candidate from MCMC Search:\n\tmax2F={:.4f}"
     "\n\tOffsets from injection parameters (relative error): {:s}.".format(
         max_2F_mcmc,
         ", ".join(
             [
                 "\n\t\t{1:s}: {0:.4e} ({2:.4f}%)".format(
                     max_dict_mcmc[key] - signal_parameters[key],
                     key,
                     100
                     * (max_dict_mcmc[key] - signal_parameters[key])
                     / signal_parameters[key],
                 )
                 for key in search_keys
             ]
         ),
     )
 )
 # get additional point and interval estimators
 stats_dict_mcmc = mcmcsearch.get_summary_stats()
 print(
     "Mean from MCMCSearch:\n\tOffset from injection parameters (relative error): {:s}"
     "\n\tExpressed as fractions of 2sigma intervals: {:s}.".format(
         ", ".join(
             [
                 "\n\t\t{1:s}: {0:.4e} ({2:.4f}%)".format(
                     stats_dict_mcmc[key]["mean"] - signal_parameters[key],
                     key,
                     100
                     * (stats_dict_mcmc[key]["mean"] - signal_parameters[key])
                     / signal_parameters[key],
                 )
                 for key in search_keys
             ]
         ),
         ", ".join(
             [
                 "\n\t\t{1:s}: {0:.4f}%".format(
                     100
                     * np.abs(stats_dict_mcmc[key]["mean"] - signal_parameters[key])
                     / (2 * stats_dict_mcmc[key]["std"]),
                     key,
                 )
                 for key in search_keys
             ]
         ),
     )
 )
 print(
     "Median from MCMCSearch:\n\tOffset from injection parameters (relative error): {:s},"
     "\n\tExpressed as fractions of 90% confidence intervals: {:s}.".format(
         ", ".join(
             [
                 "\n\t\t{1:s}: {0:.4e} ({2:.4f}%)".format(
                     stats_dict_mcmc[key]["median"] - signal_parameters[key],
                     key,
                     100
                     * (stats_dict_mcmc[key]["median"] - signal_parameters[key])
                     / signal_parameters[key],
                 )
                 for key in search_keys
             ]
         ),
         ", ".join(
             [
                 "\n\t\t{1:s}: {0:.4f}%".format(
                     100
                     * np.abs(stats_dict_mcmc[key]["median"] - signal_parameters[key])
                     / (
                         stats_dict_mcmc[key]["upper90"]
                         - stats_dict_mcmc[key]["lower90"]
                     ),
                     key,
                 )
                 for key in search_keys
             ]
         ),
     )
 )

Total running time of the script: ( 0 minutes 0.000 seconds)

Download Python source code: PyFstat_example_binary_mcmc_vs_grid_comparison.py

Download Jupyter notebook: PyFstat_example_binary_mcmc_vs_grid_comparison.ipynb

Gallery generated by Sphinx-Gallery

Next Previous

© Copyright 2020, Gregory Ashton, David Keitel, Reinhard Prix, Rodrigo Tenorio. Revision 0dbba7e8.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: v1.11.5
Versions
latest
stable
v1.11.5
v1.11.4
v1.11.3
v1.11.2
v1.11.1
v1.11.0
v1.10.1
v1.10.0
Downloads
On Read the Docs
Project Home
Builds