MCMC search: Semicoherent F-statistic with initialisation

Directed MCMC search for an isolated CW signal using the fully-coherent F-statistic. Prior to the burn-in stage, walkers are initialized with a certain scattering factor.

10 import os
11
12 import numpy as np
13
14 import pyfstat
15
16 label = "PyFstatExampleMCMCSearchUsingInitialisation"
17 outdir = os.path.join("PyFstat_example_data", label)
18 logger = pyfstat.set_up_logger(label=label, outdir=outdir)
19
20 # Properties of the GW data
21 data_parameters = {
22     "sqrtSX": 1e-23,
23     "tstart": 1000000000,
24     "duration": 100 * 86400,
25     "detectors": "H1",
26 }
27 tend = data_parameters["tstart"] + data_parameters["duration"]
28 mid_time = 0.5 * (data_parameters["tstart"] + tend)
29
30 # Properties of the signal
31 depth = 10
32 signal_parameters = {
33     "F0": 30.0,
34     "F1": -1e-10,
35     "F2": 0,
36     "Alpha": np.radians(83.6292),
37     "Delta": np.radians(22.0144),
38     "tref": mid_time,
39     "h0": data_parameters["sqrtSX"] / depth,
40     "cosi": 1.0,
41 }
42
43 data = pyfstat.Writer(
44     label=label, outdir=outdir, **data_parameters, **signal_parameters
45 )
46 data.make_data()
47
48 # The predicted twoF (expectation over noise realizations) can be accessed by
49 twoF = data.predict_fstat()
50 logger.info("Predicted twoF value: {}\n".format(twoF))
51
52 DeltaF0 = 1e-7
53 DeltaF1 = 1e-13
54 VF0 = (np.pi * data_parameters["duration"] * DeltaF0) ** 2 / 3.0
55 VF1 = (np.pi * data_parameters["duration"] ** 2 * DeltaF1) ** 2 * 4 / 45.0
56 logger.info("\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n".format(VF0 * VF1, VF0, VF1))
57
58 theta_prior = {
59     "F0": {
60         "type": "unif",
61         "lower": signal_parameters["F0"] - DeltaF0 / 2.0,
62         "upper": signal_parameters["F0"] + DeltaF0 / 2.0,
63     },
64     "F1": {
65         "type": "unif",
66         "lower": signal_parameters["F1"] - DeltaF1 / 2.0,
67         "upper": signal_parameters["F1"] + DeltaF1 / 2.0,
68     },
69 }
70 for key in "F2", "Alpha", "Delta":
71     theta_prior[key] = signal_parameters[key]
72
73 ntemps = 1
74 log10beta_min = -1
75 nwalkers = 100
76 nsteps = [100, 100]
77
78 mcmc = pyfstat.MCMCSearch(
79     label=label,
80     outdir=outdir,
81     sftfilepattern=data.sftfilepath,
82     theta_prior=theta_prior,
83     tref=mid_time,
84     minStartTime=data_parameters["tstart"],
85     maxStartTime=tend,
86     nsteps=nsteps,
87     nwalkers=nwalkers,
88     ntemps=ntemps,
89     log10beta_min=log10beta_min,
90 )
91 mcmc.setup_initialisation(100, scatter_val=1e-10)
92 mcmc.run(
93     walker_plot_args={"plot_det_stat": True, "injection_parameters": signal_parameters}
94 )
95 mcmc.print_summary()
96 mcmc.plot_corner(add_prior=True, truths=signal_parameters)
97 mcmc.plot_prior_posterior(injection_parameters=signal_parameters)

Gallery generated by Sphinx-Gallery